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1 Introduction

Latent Gaussian models (Rue et al., 2009) constitutes a general class of Bayesian hierarchical
regression models widely used in several applied fields. They are defined assuming an
additive combination of effects for the linear predictor, and a Gaussian prior is specified as
prior distribution for each parameter.

Using suitable design matrices and structured covariance matrices for the Gaussian
priors, it is possible to let the model account for different relationships between the response
and the covariates. For instance, flexible non-linear relationships (Lang and Brezger, 2004),
spatially correlated errors (Besag et al., 1991) and temporal effects can be included as effects
in latent Gaussian models. It is common to specify the covariance matrices of the Gaussian
priors in order to define a Gaussian Markov Random Field (GMRF), characterized by a
sparse precision matrix that leads to relevant computational advantages (Rue and Held,
2005). Moreover, Intrinsic-GMRF priors, in which the covariance matrix is not full-rank,
are often chosen.

The structured covariance matrix characterizing such priors for the model parameters is
multiplied by a scale factor, a scalar hyper-parameter that requires a further prior distribu-
tion, if a fully Bayesian framework is chosen. The issue of specifying the prior distribution
for scale parameters has an important tradition in the statistical literature and is crucial
when structured matrices are specified since they can impact the amount of prior variance
assigned to each model component. Among the others see Sørbye and Rue (2014), Klein
et al. (2016), Simpson et al. (2017) and Fuglstad et al. (2020).

2 Background and statement of the problem

A latent Gaussian model is based on the assumption that the response variable y ∈ Rn
follows an exponential family distribution with the i-th (i = 1, ..., n) conditional expectation
µi that is related to the linear predictor ηi through a link function g(µi) = ηi. The most
general structure of the predictor is:

ηi = β0 +

p∑
l=1

βlcli +

q∑
j=1

fj(zji),
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where β0 is the intercept, βj are the fixed effect coefficients related to the covariate values cl,
fj(·) are smooth flexible functions that allow to model the dependence between the response
and a set of covariates. Exploiting the mixed model representation (Klein et al., 2016), it
is possible to write the flexible functions as zTjiγj , where γj is a vector of coefficients for
which the following Gaussian prior is assumed:

γj ∼ N
(
0, σ2γjK

−
γj

)
.

The main focus of the work is the elicitation of the scale parameter’s prior π
(
σ2γj

)
introducing available information information on the phenomenon and taking into account
the fixed structure of the precision matrix K−

γj . In past works, Sørbye and Rue (2014)

proposed to scale the covariance matrix using a generalized variance, then the prior on σ2γj
is specified treating the random effect as an unstructured one. It represents an interesting
operational solution, but the developed framework is still conditioned with respect to the
scale parameter. A solution based on the marginalization of the prior distribution of the
random effects prior with respect to σ2γj was presented in Klein et al. (2016).

3 Research question or hypothesis, aim, objectives and de-
liveries

The research work relies on the idea of specifying the prior distribution on the random
vector νj = Zjγj considering its sample variance defined as follows:

Vνj =
νTj Mνj

n− 1
=

1

n− 1

n∑
i=1

(νij − ν̄j)2 ,

where M is the centering matrix. Conditionally on the scale parameter, Vνj is a random
variable distributed as a quadratic form in Gaussian variable:

Vνj |σ2γj ∼
σ2γj
n− 1

n∑
k=1

λkjXk; Xk ∼ χ2
1, k = 1, . . . , n,

where {λ1j , λ2j , . . . , λnj} are the eigenvalues of K−
νj . Eventually, the elicitation of the prior

on Vνj is carried out on its marginal distribution, after that an integral equation is solved.
Starting from this general idea, the following developments are expected.

� Theoretical progresses: the available results need to be formalized. The final goal
is proposing a self-contained framework in which the user must specify the prior
variability on the linear predictor only, then an equal subdivision among the different
components is automatically performed. In particular, the impact that the developed
prior elicitation framework has on the fixed covariates and the effects of the presence
of improper priors (i.e. IGMRF) must be further investigated.
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� Software: MCMC algorithms are required in order to retrieve samples from the pos-
terior distribution of the model parameters. In particular, Metropolis-Hastings algo-
rithms must be implemented to estimate latent Gaussian models under the proposed
prior for scales parameters. To encourage the use of the provided prior elicitation
tool, a R package containing the functions required for the model estimation should
be developed.

� Applications: two different applied problems are expected to be tackled under the
proposed methodology.

– Analysis of INVALSI data: INVALSI data provide rich information concerning
school performances over the last years, and they can be extremely helpful in
evaluating the effect of COVID-19 pandemic on student performances. In this
context, multilevel models have been widely used for estimating the impact of
individual and group-level socio-economic variables. Latent Gaussian models can
be a useful tool to this aim because of their ability to capture complex non-linear
relationship and to model interactions between variables.

– Disease mapping: the BYM model (Besag et al., 1991) is a popular tool used in
environmental epidemiology for which the prior elicitation problem has a long
tradition (see, e.g, Bernardinelli et al. (1995) and Wakefield (2006)). The devel-
oped proposal is expected to be adapted to this applied framework.

The research activity will follow the plan reported below:

� Survey and synthesis of the scientific literature (month 1);

� Methodological developments concerning the proposed prior specification setting: pri-
ors on fixed effects (months 2-6);

� Software implementation, development of an R package (months 4-12);

� Application of the developed methodologies: the BYM model in disease mapping and
INVALSI data (months 6-12).

The fellow is expected to deliver at least two working papers and to disseminate the
advancements of his research in two international conferences.

4 Participants in the study and the role they play

The research will involve some members of the Department of Statistical Sciences:

� Fedele Greco will be involved as a specialist in the field of prior elicitation in Bayesian
random effect models.

� Daniela Cocchi will be involved as expert of Bayesian inference.

� Mariagiulia Matteucci will be involved as expert in the analysis of education data in
the application of the developed methodologies to the INVALSI data.
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